TD - COTATION DIMENSIONNELLE, ajustements

Thème : Bride hydraulique

A - Analyse technologique

1°- a) Une gorge a été usinée sur le piston 3 afin d'accueillir un joint repéré 8. Quel type d'étanchéité doit assurer le joint 8 ? (Statique ou dynamique).

Dynamique

b) Donner la désignation normalisée de ce joint 8.

Joint torique $40,64 \times 5,33$

2°-a) Quel est le type de filetage employé pour le raccord d'arrivée d'huile sous pression?

Filet à profil gaz avec étanchéité

b) Pour quelle raison a t on utilisé ce type de filet?

Pour assurer l'étanchéité

3°- Quel outil faut-il utiliser pour visser le couvercle 6 dans la chemise 2 ?

Une clef à ergots

B - Analyse de la cotation du mécanisme

1°- Les cotes tolérancées:

Cote tolérancée prélevée sur le dessin	Dimension nominale	Dimension ma×imale	Dimension minimale	Intervalle de tolérance
5 ^{+0,1}	5	5,1	5	0,1
18 ^{±0,1}	18	18,1	17,9	0,2
68 ^{-0,1}	68	68,9	67,9	1
21 f8	21	20,980	20,947	0,033
52 g6	52	51,990	51,971	0,019

2°- Les ajustements

AJUSTEMENTS →	Ø 12,5 H6 p6	Ø 61 H7 p6	Ø 52 H7 g6
Cote tolérancée de l'alésage	Ø 12,5 H6	Ø 61 H7	Ø 52 H7
E _s	0,011	0,030	0,030
Ei	0	0	0
IT _A	0,011	0,030	0,030
A _{max}	12,511	61,030	52,030
A _{min}	12,5	61	52
Cote tolérancée de l'arbre	Ø 12,5 p6	Ø 61 p6	Ø 52 g6
Es	0,029	0,051	-0,010
Ei	0,018	0,032	-0,029
ITa	0,011	0,019	0,019
a _{max}	12,529	61,051	51,990
a _{min}	12,518	61,032	51,971
J_{max}	-0,007	-0,002	0,059
J_{min}	-0,029	-0,051	0,010
IT_J	0,022	0,049	0,049
Type d'ajustement →	Serrage	Serrage	Jeu

^{3°-} La pression de l'huile est de 9 MPa (90 bars). Après consultation du GDI au chapitre "joints toriques", peut on approuver le choix de l'ajustement piston 3/chemise 2 (H7 g6)?

OUI puisque entre 8 et 20 MPa, il faut un ajustement H7 g6

Lycée E. BRANLY Page 1/1